Management approaches in moderate-to-severe AD should address the persistent underlying Type 2 inflammation


Three types of immune response play a natural protective role against different pathogens, the Type 2 immune response drives AD specifically2–4
Broad spectrum immunosuppressants do not specifically inhibit Type 2 inflammatory pathway5–7

Non-specific mechanisms may result in unwanted side effects and the need for lab monitoring, limiting traditional systemic treatments as long-term therapeutic options2,5–10

IL-4 and IL-13 drive Type 2 inflammation

IL-4 and IL-13 are key Type 2 cytokines involved in the pathogenesis of AD2,4

DUPIXENT targets Type 2 inflammation

DUPIXENT inhibits IL-4 and IL-13 signalling, and reduces persistent underlying Type 2 inflammation in AD1,20

DUPIXENT demonstrated a safety profile in clinical studies that is consistent in adults, adolescents and children1


DUPIXENT has a long-term safety and tolerability profile that has been investigated up to 3 years in clinical trials in adults1,21
The long-term safety profile seen in adults is consistent with the safety profile of adolescents and children, seen at 16 weeks1,22,23
DUPIXENT does not require routine laboratory monitoring1


Safety profile

Learn more about the safety profile of DUPIXENT.




Find out more


Overview of AD

Find out more about how AD has a continuous inflamation cycle.



Find out more


Mode of action DUPIXENT

Have questions about how DUPIXENT works?




Find out more

    AD, atopic dermatitis; IFNγ, interferon gamma; IL, interleukin; ILC, innate lymphoid cells; JAK, Janus kinase; NK, natural killer cells; Th, T-helper cells; TNF, tumour necrosis factor.

    References

    1. DUPIXENT Summary of Product Characteristics. September 2021.
    2. Leung DYM, et al. J Clin Invest. 2004;113(5):651–657.
    3. Suárez-Fariñas M, et al. J Allergy Clin Immunol. 2011;127(4):954–964.
    4. Gittler JK, et al. J Allergy Clin Immunol. 2012;130(6):1344–1354.
    5. Hajar T, et al. An Bras Dermatol. 2018;93:104–107.
    6. Wakelin SH, et al. Medicine. 2017;45:363–367.
    7. Moyle M, et al. Exp Dermatol. 2019;28:756–768.
    8. Seegräber M, et al. Expert Rev Clin Pharmacol. 2018; 11:467–474.
    9. Armstrong AW, et al. PLoS ONE. 2019:14:e0210517.
    10. Wu J & Guttman-Yasky E. Expert Opin Biol Ther. 2020;20:525–538.
    11. Kaiko GE, et al. Immunol. 2008;123:326–338.
    12. Eyerich K & Eyerich S. J Eur Acad. 2017;32:692–703.
    13. Raphael I, et al. Cytokine. 2015;74:5–17.
    14. Schwartz DM, et al. Nat Rev Rheumatol. 2016;12(1):25–36.
    15. Murray PJ. J Immunol. 2007;178(5):2623–2629.
    16. Annunziato F, et al. J Allergy Clin Immunol. 2015;135(3):626–635.
    17. Schleimer R. Annu Rev Pathol. 2017;12:331–357.
    18. Nakayama T, et al. Annu Rev Immunol. 2017;35:53–84.
    19. Coates LC, et al. Semin Arthritis Rheum. 2016;46:291–304.
    20. Blauvelt A, et al. Lancet. 2017;389(10086):2287–2303.
    21. Thaçi D, et al. Favorable Safety and Sustained Efficacy With Long-Term Dupilumab Treatment in Adults With Moderate-to-Severe Atopic Dermatitis: An Analysis up to 3 Years (LIBERTY AD OLE) presented at the 20th Annual Las Vegas Dermatology Seminar, Nevada, USA, November 7–9 2019.
    22. Paller AS, et al. Am J Clin Derm. 2020;21(1): 119–131.
    23. Paller AS, et al. J Am Acad Dermatol. 2020;83(5):1282–1293.

MAT-IE-2101040(v4.0) | Date of preparation: February 2022